Selection diagram

Product options
Sold separately as accessory

Code structure

 Attention! The feasibility of a code number does not mean the effective availability of a product. Please contact our sales office.

Ambient temperature
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
T6 $-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$

Actuating head	
$\mathbf{7 8}$	longitudinal head
$\mathbf{8 3}$	left transversal head (FD-FL housing only)
$\mathbf{8 4}$	right transversal head (FD-FL housing only)

Actuating force

standard
E7 initial 20 N ...final 40 N (only head 78
E9 initial 13 N ...final 75 N (only head 83-84)

Pre-installed cable glands or connectors
no cable gland or connector (standard)
K23 cable gland for cables Ø $6 \ldots 12$ mm

K50 M12 metal connector, 5-pole

For the complete list of possible combinations please contact our technical department

Threaded conduit entry

M2 M20×1.5 (standard)
PG 13.5

Contact type

silver contacts (standard)
G silver contacts with $1 \mu \mathrm{~m}$ gold coating
Silver contacts, $2.5 \mu \mathrm{~m}$ gold coating (not for contact blocks 20, 21, 22, 33, 34)

Main features

- Metal or plastic housing, from one to three conduit entries
- Protection degree IP67
- In compliance with EN ISO 13850
- 7 contact blocks available
- Versions with vertical or horizontal actuation
- Versions with assembled M12 connector
- Versions with gold-plated silver contacts

Quality marks:

IMQ approval:
UL approval:
CCC approval:
EAC approval:
EG605
E131787
2021000305000099
RU C-IT.УT03.B.00035/19

Technical data

Housing

FP series housing made of glass fibre reinforced technopolymer, self-extinguishing, shock-proof and with double insulation:
FD, FL and FC series: metal housing, baked powder coating.
FD, FP, FC series: one threaded conduit entry: M20×1.5 (standard)
FL series: three threaded conduit entries: M20×1.5 (standard)
Protection degree:
IP67 acc. to EN 60529 with cable gland of equal or higher protection degree

General data

SIL (SIL CL) up to:
Performance Level (PL) up to:
Safety parameters:
B_{100} : 2,000,000 for NC contacts
Mission time:
Ambient temperature:
Max. actuation frequency:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Tightening torques for installation:
Wire cross-sections and
wire stripping lengths:

SIL 3 acc. to EN 62061
PL e acc. to EN ISO 13849-1

20 years
$-25^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (standard)
$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$ (T6 option)
1 cycle / 6 s
1 million operating cycles
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
see page 441
see page 461

In compliance with standards:

IEC 60947-5-1, IEC 60947-5-5, IEC 60947-1, IEC 60204-1, EN ISO 14119, EN ISO 12100,
IEC 60529, EN ISO 13850, EN IEC 63000, UL 508, CSA C22.2 No. 14.

Approvals:

EN 60947-5-1, UL 508, CSA C22.2 No. 14, GB/T14048.5

Compliance with the requirements of:

Machinery Directive 2006/42/EC, EMC Directive 2014/30/EU, RoHS Directive 2011/65/ EU.
Positive contact opening in conformity with standards:
IEC 60947-5-1, EN 60947-5-1.

© If not expressly indicated in this chapter, for correct installation and utilization of all articles see the instructions given on pages 443 to 454.

Description

These rope-operated safety switches are installed on machines or conveyor belts and allow the machine to be brought to an emergency stop from any point and with any pull on the rope. This means significant cost savings for medium and large machines, since multiple emergency-stop buttons can be replaced with a single switch. They are equipped with a self-control function that constantly checks the correct function and signals a possible loosening or breaking of the rope through the opening of the contacts. These safety switches keep the contacts open after activation until the reset is performed, even if the rope is released.

Laser engraving

Head with variable orientation

For all switches, the head can be adjusted in 90° steps after removing the four fastening screws.

Extended temperature range

These devices are also available in a special version suitable for an ambient operating temperature range from $-40^{\circ} \mathrm{C}$ up to $+80^{\circ} \mathrm{C}$.
They can therefore be used for applications in cold stores, sterilisers and other equipment with low temperature environments. The special materials used to produce these versions retain their characteristics even under these conditions, thereby expanding the installation possibilities.

Indicator for rope adjustment

All switches are provided with a green ring that shows the area of the correct tightening of the rope. The installer has only to tighten the rope until the black indicator will be in the middle of the green area. With this setting, the switch can be reset by pulling the blue knob to close the electrical safety contacts.
If the tension (or loosening) on the rope is so high that the black indicator exits the green area, the electrical safety contacts will open and the reset device will trigger.

Features approved by IMO

Rated insulation voltage (Ui): Conventional free air thermal current (lth): Protection against short circuits: Rated impulse withstand voltage ($\mathrm{U}_{\text {imp }}$):	
	$34,37$
	type aM fuse 10 A 500
	6 kV
	4 kV (for contact blocks 20, 21, 22, 28, 29, 30, 33, 34)
Protection degree of the housing:	IP67
MV terminals (screw terminals)	
Pollution degree:	
Utilization category:	AC15
Operating voltage (Ue):	$400 \mathrm{Vac}(50 \mathrm{~Hz})$
Operating current (le):	
Forms of the contact element: $\mathrm{Za}, \mathrm{Za}+\mathrm{Za}, \mathrm{X}+\mathrm{X}, \mathrm{Zb}, \mathrm{Y}+\mathrm{Y}, \mathrm{Y}+\mathrm{Y}+\mathrm{X}, \mathrm{Y}+\mathrm{Y}+\mathrm{Y}, \mathrm{Y}+\mathrm{X}+\mathrm{X}, \mathrm{Y}, \mathrm{X}$.	
Positive opening of contacts on contact blocks $5,6,7,8,9,11,13,14,16,17,18,19$,	
20, 21, 22, 28, 29, 30, 33, 34, 37, 38, 39, 66.	
compliance with standards: EN 60947-1, EN 60947-5-1, fundamental requirements	

Please contact our technical department for the list of approved products.

All devices are marked using a dedicated indelible laser system. These engravings are therefore suitable for extreme environments too. Thanks to this system that does not use labels, the loss of plate data is prevented and a greater resistance of the marking is achieved over time.

Protection degree IP67

These devices are designed to be used under the toughest environmental conditions, and they pass the IP67 immersion test acc. to EN 60529. They can therefore be used in all environments where the maximum degree of protection is required for the housing.

Reduced actuating force

If the tension indicator is in the green area, the electrical safety contacts can be closed by pulling the blue knob. The reset status can be identified quickly by the green ring under the blue knob.

Features approved by UL

Electrical Ratings:	Q 300 pilot duty ($69 \mathrm{VA}, 125-250 \mathrm{~V} \mathrm{dc}$)
Environmental Ratings:	A600 pilot duty (720 VA, 120-600 V ac)
Types $1,4 \mathrm{X}, 12,13$	

Use 60 or $75^{\circ} \mathrm{C}$ copper (Cu) conductor and wire size range 12, 14 AWG, stranded or solid.
The terminal tightening torque of 7.1 lb in $(0.8 \mathrm{Nm})$.
For FP series: the hub is to be connected to the conduit before the hub is connected to the enclosure.

Please contact our technical department for the list of approved products.

Contact type:
\mathbf{L} = slow action

	Metal housing	Metal housing	Metal housing
Contact type: L = slow action Contact blocks			
9 L	FL 978-M2 \quad - 2NC	FL 983-M2 $\quad \Theta \quad$ 2NC	FL 984-M2 $\quad \Theta \quad$ 2NC
18 L	FL 1878-M2 \quad - 1NO+1NC	FL 1883-M2 $\quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$	FL 1884-M2 $\quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$
20 L	FL 2078-M2 $\quad \Theta$ 1NO+2NC	FL 2083-M2 $\quad \Theta \quad 1 \mathrm{NO}+2 \mathrm{NC}$	FL 2084-M2 $\quad \Theta \quad$ 1NO+2NC
21 L	FL 2178-M2 $\quad \Theta$ 3NC	FL 2183-M2 $\quad \Theta \quad 3 \mathrm{NC}$	FL 2184-M2 $\quad \Theta \quad 3 N C$
22 L	FL 2278-M2 \quad 2 ${ }^{\text {NO}}+1 \mathrm{NC}$	FL 2283-M2 $\quad \Theta \quad 2 \mathrm{NO}+1 \mathrm{NC}$	FL 2284-M2 $\quad \Theta \quad$ 2NO+1NC
33 L	FL 3378-M2 \quad - 1NO+1NC	FL 3383-M2 $\quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$	FL 3384-M2 $\quad \Theta \quad 1 \mathrm{NO}+1 \mathrm{NC}$
34 L	FL 3478-M2 \quad 2NC	FL 3483-M2 $\quad \Theta \quad$ 2NC	FL 3484-M2 $\quad \Theta \quad$ 2NC
Actuating force	Initial 63 N ... final $83 \mathrm{~N}(90 \mathrm{~N} \Theta$)	Initial 147 N ... final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$	Initial 147 N ... final $235 \mathrm{~N}(250 \mathrm{~N} \Theta)$
Travel diagrams	Page 256 - group 1	Page 256 - group 2	Page 256 - group 2

All values in the drawings are in mm
Accessories See page 419
The 2D and 3D files are available at www.pizzato.com

How to read travel diagrams

Travel diagrams table

Contact blocks	Group 1	Group 2
$\begin{array}{ll} 18 & { }^{11} \\ 1 \mathrm{NO}+1 \mathrm{NC} & { }_{12}-f_{24}^{23} \end{array}$		
$\begin{array}{llll} 21 & 41 & 21 & 31 \\ 3 N C & 7 & -7 & -7 \\ 12 & 22 & -32 \end{array}$		
$\begin{array}{lll} 33 & \vdash_{14}^{13}-e_{22}^{21} \\ 1 N C+1 N O & l_{1} \end{array}$		
$\begin{array}{llll} 34 & 4_{12}^{11}-4_{2}^{21} \\ 2 N C & 12 & 22 \end{array}$		

IMPORTANT:

In safety applications, actuate the switch at least up to the positive opening travel shown in the travel diagrams with symbol Θ. Actuate the switch at least with the positive opening force, reported in brackets below each article, next to the actuating force value.

Application examples and max. rope length for switches with longitudinal head

Application examples and max. rope length for switches with transversal head

Maximum spans

Maximum spans for switches with longitudinal head

Maximum spans for switches with transversal head

Important: The above data are guaranteed only using original rope and accessories. See page 267.

Adjustment of the switching point

Tighten the rope connected to the switch, until the end of the indicator (1) reaches about the middle of the green ring (2).

Pull the knob (3) in order to close the safety contacts inside the switch. Below the knob a green ring (4) will be disclosed.

