

FlexiForceTM Standard Model A502

The FlexiForce A502 is a square sensor, with a sensing area measuring at 50.8 mm x 50.8 mm (2 in. x 2 in.). This sensor is available off-the-shelf for easy proof of concept. The A502 can be used with our test & measurement, prototyping, and embedding electronics, including the OEM Development Kit, FlexiForce Quickstart Board, and the ELFTM System*. You can also use your own electronics, or multimeter.

BENEFITS

- Thin and flexible
- Ideal for prototyping and integration
- Easy to use

PHYSICAL PROPERTIES

Thickness 0.203 mm (0.008 in.)

Length 81.3 mm (3.20 in.)**

Width 55.9 mm (2.20 in.)

Sensing Area 50.8 mm x 50.8 mm (2 in. x 2 in.)

Connector 2-pin Male Square Pin

Substrate Polyester

Pin Spacing 2.54 mm (0.1 in.)

Force Range The A502 sensor is available in a 0-222 N (0-50 lb) range, specified with Tekscan electronics.

This model is linear through a much lower range of 0-22 N (0-5 lb), and is capable of

measuring loads up to 44,482 N (10,000 lb).

^{*} Sensor will require an adapter/extender to connect to the ELF System. Contact your Tekscan representative for assistance.

Actual size of sensor

(.25 in.)

Sensing Area 81.3 mm

^{**} Length does not include pins, please add approximately 6 mm (0.25 in.) for pin length for a total length of approximately 87 mm (3.4 in).

Typical Performance

Voltage (V)	Force (lbs)	Resistance $(k\Omega)$	Conductance (µS)
0.5	20	34.36	29.11
0.5	40	17.14	58.33
0.5	60	11.57	86.41
0.5	80	8.71	114.76
0.5	100	6.97	143.54

- Sensor resistance measured 20 seconds after applied load
- Sensor loaded through a polycarbonate puck equal to 68% (2.72 in²) of total active area
- Sensor was not attached to any drive circuitry

In order to measure higher forces, apply a lower drive voltage (-0.5 V, -0.10 V, etc.) and reduce the resistance of the feedback resistor (1k Ω min.) To measure lower forces, apply a higher drive voltage and increase the resistance of the feedback resistor.

Sensor output is a function of many variables, including interface materials. Therefore, Tekscan recommends the user calibrate each sensor for the application.

$\begin{array}{c} \textbf{Recommended Circuit} \\ \hline \\ \textbf{V}_{\text{OUT}} = -\textbf{V}_{\text{T}} * (\textbf{R}_{\text{F}}/\textbf{R}_{\text{S}}) \\ \hline \\ \textbf{V}_{\text{T}} - \textbf{I} \textbf{V} \\ \textbf{DOWER} \\ \hline \\ \textbf{Supply Voltages should be constant} \\ \textbf{Supply Voltages should be constant} \\ \textbf{Sensor Resistance R}_{\text{F}} \text{ is } \textbf{1} \textbf{k} \Omega \text{ to } 100 \textbf{k} \Omega \\ \textbf{Sensor Resistance R}_{\text{S}} \text{ at no load is } \textbf{>} 5 \textbf{M} \Omega \\ \textbf{Max recommended current is } \textbf{2.5 mA} \\ \hline \end{array}$

	Typical Performance	Evaluation Conditions
Linearity (Error)	< ±3% of full scale	Line drawn from 0 to 50% load
Repeatability	< ±2.5% of full scale	Conditioned sensor, 80% of full force applied
Hysteresis	< 4.5 % of full scale	Conditioned sensor, 80% of full force applied
Drift	< 5% per logarithmic time scale	Constant load of 111 N (25 lb)
Response Time	< 5µsec	Impact load, output recorded on oscilloscope
Operating Temperature	-40°C - 60°C (-40°F - 140°F)	Time required for the sensor to respond to an input force

 Force reading change per degree of temperature change = 0.36%/°C (±0.2%/°F)

Purchase Today Online at www.tekscan.com/store

ISO 9001 & 13485

🕭 +1.617.464.4283

(1.800.248.3669

™ info@tekscan.com

🖟 www.tekscan.com/flexiforce